Министерство науки и высшего образования Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего образования РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГИДРОМЕТЕОРОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ

филиал ФГБОУ ВО «РГГМУ» в г. Туапсе

Кафедра «Метеорологии, экологии и экономического обеспечения деятельности предприятий природопользования»

Рабочая программа дисциплины

ИНТЕРАКТИВНЫЕ ИНФОРМАЦИОННЫЕ СИСТЕМЫ

Основная профессиональная образовательная программа высшего образования программы бакалавриата по направлению подготовки

09.03.03 «Прикладная информатика»

Направленность (профиль): **Прикладные информационные системы и технологии**

Квалификация: **Бакалавр**

Форма обучения заочная

1 од поступления 2020-2019
Утверждаю
Директор филиала ФГБОУ
ВО «РГГМУ» в г. Туапсе Аракелов М.
Рассмотрена и ут верждена на засе дании кафедры
31 августа 2020 г., протокол № 1
Зав. кафедрой Цай С.Н.
Авторы-разработчики:
Ткаченко Г.Н.

Туапсе 2020

1. Цель и задачи освоения дисциплины

Цель дисциплины – изучение освоение математических основ, алгоритмов и методов функционирования современных графических средств для разработки интерактивных информационных систем

Основные задачи дисциплины:

- изучение тенденций построения современных интерактивных систем и о стандартов в области их разработки;
- освоение технических, программных и графических средств на базе персональных компьютеров;
- формирование у студентов навыков, необходимых для обработки и редактирования информации с помощью компьютерных графических средств.

2. Место дисциплины в структуре основной профессиональной образовательной программы

Дисциплина относится к обязательной части образовательной программы. Изучение дисциплины требует входных компетенций, знаний, умений и навыков, предусмотренных следующими курсами:

- Информатика и программирование
- Операционные и телекоммуникационные системы
- Информационные системы и технологии
- Обработка и анализ данных
- Проектирование баз данных

3. Перечень планируемых результатов обучения

Процесс изучения дисциплины направлен на формирование компетенции ПК-7, ПК-11

Таблица 1. Профессиональные компетенции

Код и наименование профессиональной	Код и наименование индикатора
компетенции	достижения профессиональной
	компетенции
ПК-7 Способен разрабатывать	ИДПК-7.1. Владеет концептуальным
концепцию системы и представлять её	проектированием информационных систем
заинтересованным лицам	
ПК-11. Способен проектировать	ИДПК-11.1 Использует существующие
программное обеспечение	типовые решения и шаблоны
	проектирования программного обеспечения

4. Структура и содержание дисциплины

4.1. Объем дисциплины

Объем дисциплины составляет 8 зачетные единицы, 288 академических часа.

Таблица 2 - Объем дисциплины по видам учебных занятий в академических часах

Объём дисциплины	Всего часов		
Заочная форма обучения			
Объем дисциплины	288		
Контактная работа обучающихся с преподавателем	24		
(по видам аудиторных учебных занятий) – всего:			
в том числе:	-		
лекции	12		
занятия семинарского типа:			
лабораторные занятия	12		
Самостоятельная работа (далее – СРС) – всего:	264		
в том числе:	-		

курсовая работа	-
контрольная работа	-
Вид промежуточной аттестации	Экзамен

4.2. Структура дисциплины

Таблица 3 - Структура дисциплины для заочной формы обучения

№	Тема дисциплины	Курс	в т.ч. самостоятельная работа студентов, час.		Формы текущего контроля успеваемости	Форми руемые компет енции	Индикатор ы достижения компетенци	
			лекци и	лаборат орные	CPC			й
1	Виды интерактивных информационных систем. Сферы применения интерактивных информационных систем	4	2	-	44	Доклады	ПК-7	ИДПК-7.1.
2	Организация интерактивной работы в графических системах	4	2	2	44	Выполнение лабораторно й работы	ПК-7	ИДПК-7.1.
3	Модели интерактивной системы	4	2	2	44	Выполнение лабораторно й работы	ПК-7	ИДПК-7.1.
4	Основы интерактивного графического программировани я	4	2	2	44	Выполнение лабораторно й работы	ПК-11	ИДПК-11.1
5	Технология дополненной реальности	4	2	6	44	Выполнение лабораторно й работы	ПК-11	идпк-11.1
6	VR-технологии	4	2	-	44	Доклады	ПК-11	ИДПК-11.1
	Итого		12	12	264			

4.3. Содержание разделов дисциплины

Виды интерактивных информационных систем. Сферы применения интерактивных информационных систем

История и тенденции развития интерактивных графических систем (ИГС) и компьютерной графики (КГ). Классификация графических систем, автоматизированном проектировании, моделировании систем, и т.д. Графические системы на персональных компьютерах. Аппаратная база и способы взаимодействия пользователя с графическими системами. Основы интерактивной работы. Виды диалоговых прерываний. Устройства ввода-вывода графической информации, текстовый и графический режимы, гипертекст, печать и сканирование, управление памятью. устройства позиционирования и указания, моделирование визуальной среды, мультимедиа и распознавание речи и. визуальных образов. Модели взаимодействия, фреймы и окна, уровень абстракции и стили

взаимодействия, контекст и протоколы взаимодействия, эргономика. Управление процессами - документооборот, управление системами и обучение. Базы данных - справочные системы, хранилища данных, электронные библиотеки и т.д. Объектно-ориентированные среды - компьютерный дизайн. Организация доступа к информации, использование средств телекоммуникаций, развивающие и деловые игры, подготовка документов, управление процессами, проектирование систем и программных продуктов, исследование имитационных и поведенческих моделей.

Организация интерактивной работы в графических системах

Интерактивные устройства ввода-вывода графической информации. Диалоговые устройства. Интерактивные графические методы и графические редакторы. Работа с фреймами и мультидоступ. Язык виртуальной реальности (VRML) Функции браузеров и поведение в виртуальной среде, виртуальные многопользовательские среды

Модели интерактивной системы

Декомпозиция задач и дерево решений, логистика, поиск в открытых системах, модель сущность-связь и запросы к базе данных, отображение структур, процессов, объектов в системах поддержки принятия решений. Нотации для проектирования диалога: граф диалога, нотации, использующие диаграммы. Описание режимов и виртуальных устройств графического диалога, семантика диалога. Элементы управления в многооконных интерфейсах, программирование реакции на действия пользователя, использование библиотек и наборов инструментов, инструментальные среды программирования графического диалога. Работа с текстом при разработке графических программных средств. Основы компьютерного дизайна. Алгоритмы сжатия изображений

Основы интерактивного графического программирования

Базовые программные средства компьютерной графики. Графические библиотеки и их использование. Модели, описание изображений и интерактивность. Моделирование и иерархия объектов. Средства графического диалога и синтеза. Проектирование графических интерфейсов. Мультимедиа среды. Речевой интерфейс, звуковые сигналы, распознавание текстов, анимация и видеофрагменты, распознавание жестов, компьютерное зрение

Технология дополненной реальности

Сущность и происхождение. История возникновения и развития. Обзор технологий и применения. Классификация AR-систем. Характеристики AR-системы. Архитектура системы. Технические средства дополненной реальности. Технические средства, применяемые при разработке программного обеспечения AR

VR-технологии

Сущность и происхождение. История возникновения и развития. Обзор технологий и применения. Классификация. Свойства VR. Типы VR. VR с эффектом полного погружения. VR без погружения. VR с совместной инфраструктурой. VR на базе интернет-технологий. Оборудование. Управление. Области применения VR

4.4. Содержание практических работ

Таблица 4 - Содержание лабораторных занятий для заочной формы обучения

N₂	Тематика практических занятий	Всего часов
темы		
дисц		
ипли		
ны		
2	Работа со средствами деловой графики (Microsoft	2
	Office); геометрические преобразования изображений на	
	основе диаграмм; матричные композиции и композиция	
	изображений.	
3	Реализация и испытание основных алгоритмов	2
	компьютерной графики: работа с текстурами, фактурой,	

	материалами, светом, прозрачностью и т.д.	
4	Освоение графических пакетов и приложений: TinkerCade, Unity3D	2
5	Разработка простого AR-приложения для Android- устройства	6

5. Перечень учебно-методического обеспечения самостоятельной работы обучающихся по дисциплине

Таблица 5 – Содержание вопросов и заданий для самостоятельного изучения

№ раздела курса и темы	Содержание вопросов и заданий для
самостоятельного изучения	самостоятельного изучения
Виды интерактивных информационных	Организация доступа к информации,
систем. Сферы применения интерактивных	использование средств телекоммуникаций,
информационных систем	развивающие и деловые игры, подготовка
	документов, управление процессами,
	проектирование систем и программных
	продуктов, исследование имитационных и
	поведенческих моделей. ІоТ
Организация интерактивной работы в	Функции браузеров и поведение в виртуальной
графических системах	среде, виртуальные многопользовательские
	среды. Организация интерактивной работы в
	графических системах
Модели интерактивной системы	Нотации для проектирования диалога: граф
	диалога, нотации, использующие диаграммы.
	Описание режимов и виртуальных устройств
	графического диалога, семантика диалога.
Основы интерактивного графического	Машинное зрение и компьютерная графика.
программирования	Геометрическое моделирование
	Особенности восприятия цвета человеком
	Модели закраски. Методы Гуро, Фонга
	Основные пакеты растровой и векторной графики
	Классификация графического программного
	обеспечения
Технология дополненной реальности	Технические средства, применяемые при
-	разработке программного обеспечения AR
VR-технологии	VR с эффектом полного погружения. VR без
	погружения. VR с совместной
	инфраструктурой. VR на базе интернет-
	технологий. Оборудование. Управление.
	Области применения VR

6. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

6.1. Текущий контроль

Текущий контроль проводиться в форме выполнения лабораторных работ Пример лабораторной работы

Лабораторная работа №4 «Разработка простого AR-приложения для Androidустройства»

Цель: получение знаний, умений и навыков по созданию AR-приложения для Android-устройства

Задание: разработать элементы виртуального интерфейса для работы в ДР, т.е. установление связей между поведением (behaviour) виртуальной 3D-модели (у нас -

«анимация») и состоянием виртуального элемента управления

Ход работы

- 1. Создать в графическом редакторе Unity 3D сцены дополненной реальности
- 2. Создать в графическом редакторе Unity 3D виртуальную кнопку
- 3. Настроить идентификацию проекта в EasyAR
- 4. Создать отчет к лабораторной работе

В отчет по выполнению лабораторной работы включить результаты анализа хода выполнения работы скриншоты результатов выполнения основных этапов.

Критерии оценивания:

Лабораторная работа принимается в формате зачтено/ не зачтено.

Зачтено, если задание выполнено полностью, в представленном отчете обоснованно получено правильное выполненное задание.

Не зачтено, если задания выполнены частично или не выполнено.

6.2. Промежуточная аттестация

Форма промежуточной аттестации по дисциплине – экзамен

Форма проведения экзамена: устно по вопросам

ПК-7

Перечень вопросов для подготовки:

- 1. Аппаратная база и способы взаимодействия пользователя с графическими системами. Основы интерактивной работы.
 - 2. Виды диалоговых прерываний.
- 3. Устройства ввода-вывода графической информации, текстовый и графический режимы, гипертекст, печать и сканирование, управление памятью.
- 4. Устройства позиционирования и указания, моделирование визуальной среды, мультимедиа и распознавание речи и. визуальных образов.
- 5. Модели взаимодействия, фреймы и окна, уровень абстракции и стили взаимодействия, контекст и протоколы взаимодействия, эргономика.
 - 6. Управление процессами документооборот, управление системами и обучение.
- 7. Базы данных справочные системы, хранилища данных, электронные библиотеки
 - 8. Объектно-ориентированные среды компьютерный дизайн.
 - 9. Организация доступа к информации, использование средств телекоммуникаций
 - 10. Интерактивные устройства ввода-вывода графической информации.
 - 11. Диалоговые устройства.
 - 12. Интерактивные графические методы и графические редакторы.
 - 13. Работа с фреймами и мультидоступ.
 - 14. Язык виртуальной реальности (VRML)
- 15. Функции браузеров и поведение в виртуальной среде, виртуальные многопользовательские среды
- 16. Декомпозиция задач и дерево решений, логистика, поиск в открытых системах, модель сущность-связь и запросы к базе данных, отображение структур, процессов, объектов в системах поддержки принятия решений.
- 17. Нотации для проектирования диалога: граф диалога, нотации, использующие диаграммы.
- 18. Описание режимов и виртуальных устройств графического диалога, семантика диалога.
- 19. Элементы управления в многооконных интерфейсах, программирование реакции на действия пользователя, использование библиотек и наборов инструментов, инструментальные среды программирования графического диалога.
 - 20. Работа с текстом при разработке графических программных средств.

- 21. Основы компьютерного дизайна.
- 22. Алгоритмы сжатия изображений

ПК-11

Перечень вопросов для подготовки:

- 1. Базовые программные средства компьютерной графики.
- 2. Графические библиотеки и их использование.
- 3. Модели, описание изображений и интерактивность.
- 4. Моделирование и иерархия объектов.
- 5. Средства графического диалога и синтеза.
- 6. Проектирование графических интерфейсов.
- 7. Мультимедиа среды.
- **8.** Речевой интерфейс, звуковые сигналы, распознавание текстов, анимация и видеофрагменты, распознавание жестов, компьютерное зрение
 - 9. Обзор технологий и применения АR-систем.
 - 10. Классификация АR-систем.
 - 11. Характеристики AR-системы.
 - 12. Архитектура системы AR-системы.
 - 13. Технические средства дополненной реальности AR-системы.
- 14. Технические средства, применяемые при разработке программного обеспечения AR-системы
 - 15. Сущность и происхождение VR.
 - 16. Классификация VR.
 - 17. Свойства VR.
 - 18. Типы VR.
 - 19. VR с эффектом полного погружения.
 - 20. VR без погружения.
 - 21. VR с совместной инфраструктурой.
 - 22. VR на базе интернет-технологий.
 - 23. Оборудование. Управление. Области применения VR

Экзамен оценивается по четырехбалльной шкале: «отлично» / «хорошо» / «удовлетворительно» / «неудовлетворительно».

Оценка «отлично» ставится студенту, ответ которого содержит:

- глубокое знание программного материала, а также основного содержания и нотаций лекционного курса по сравнению с учебной литературой;
 - знание концептуально-понятийного аппарата всего курса;

а также свидетельствует о способности:

- самостоятельно критически оценивать основные положения курса;
- увязывать теорию с практикой.

Оценка «отлично» не ставится в случаях систематических пропусков студентом семинарских и лекционных занятий по неуважительным причинам, а также неправильных ответов на дополнительные вопросы преподавателя.

Оценка **«хорошо»** ставится студенту, ответ которого свидетельствует о полном знании материала по программе, а также содержит в целом правильное, но не всегда точное и аргументированное изложение материала. Оценка «хорошо» не ставится в случаях пропусков студентом семинарских и лекционных занятий по неуважительным причинам.

Оценка «удовлетворительно» ставится студенту, ответ которого содержит:

- поверхностные знания важнейших разделов программы и содержания лекционного курса;
 - затруднения с использованием научно-понятийного аппарата

И

терминологии курса;

 стремление логически четко построить ответ, а также свидетельствует о возможности последующего обучения.

Оценка **«неудовлетворительно»** ставится студенту, имеющему существенные пробелы в знании основного материала по программе, а также допустившему принципиальные ошибки при изложении материала.

7. Методические указания для обучающихся по освоению дисциплины

7.1. Методические указания к занятиям лекционного типа

Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначить вопросы, термины, материал, который вызывает трудности, пометить и попытаться найти ответ в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на консультации, на практическом занятии.

7.2. Методические указания к занятиям семинарского типа Лабораторные занятия

При подготовке к лабораторным работам необходимо заранее изучить методические рекомендации по его проведению. Обратить внимание на цель занятия, на основные вопросы для подготовки к занятию, на содержание темы занятия.

Лабораторное занятие проходит в виде выполнения определенного задания на компьютере с использованием специального программного обеспечения. Студент должен сдавать лабораторную работу в виде наглядной демонстрации достигнутых результатов преподавателю.

7.3. Методические указания по организации самостоятельной работы

Материал, законспектированный на лекциях, необходимо регулярно прорабатывать и дополнять сведениями из других источников литературы, представленных не только в программе дисциплины, но и в периодических изданиях.

При изучении дисциплины сначала необходимо по каждой теме прочитать рекомендованную литературу и составить краткий конспект основных положений, терминов, сведений, требующих запоминания и являющихся основополагающими в этой теме для освоения последующих тем курса. Для расширения знания по дисциплине рекомендуется использовать Интернет-ресурсы; проводить поиски в различных системах и использовать материалы сайтов, рекомендованных преподавателем.

При ответе на экзамене необходимо: продумать и четко изложить материал; дать определение основных понятий; дать краткое описание явлений; привести примеры. Ответ следует иллюстрировать схемами, рисунками и графиками.

8. Учебно-методическое и информационное обеспечение дисциплины

8.1. Перечень основной и дополнительной учебной литературы Основная литература

1. Фомин В.В., Миклуш В.А. Интеллектуальные информационные системы: Учебное пособие. – СПб.: РГГМУ, 2013. – 150 с. Электронный ресурс. Режим доступа: http://elib.rshu.ru/files_books/pdf/rid_1faabe24315b43d1aa92ab38522decbb.pdf

Дополнительная литература

1. Лаврищева, Е. М. Программная инженерия и технологии программирования сложных систем: учебник для вузов / Е. М. Лаврищева. — 2-е изд., испр. и доп. — М.: Издательство Юрайт, 2018. — 432 с. — (Серия: Бакалавр. Академический курс). — ISBN

978-5-534-07604-2. — Режим доступа : www.biblio-online.ru/book/F6D1682E-9B98-4A4C-BEAE-5EAAFC7A177A..

- 8.2. Перечень программного обеспечения
- 1. Операционная система Windows XP, Microsoft Office 2007
- 2. Программы электронных таблиц Excel
- 3. Текстовый редактор Word
- 4. Программа для создания презентаций Power Point
- 5. Программа распознавания текста FineReader
- 8.3. Перечень информационных справочных систем
 - 1. Консультант Плюс.
- 8.4. Электронные библиотечные ресурсы:
- 1. Электронно-библиотечная система ГидроМетеоОнлайн- http://elib.rshu.ru/
- 2. Информация электронной библиотечной системы http://znanium.com/
- 3. Электронный каталог библиотеки РГГМУ http://lib.rshu.ru/jirbis2/index.php? option=com_irbis&view=irbis&Itemid=108
- 4. Издательство ЮРАЙТ https://biblio-online.ru/
- 8.5. Современные профессиональные базы данных
- 1. Научная электронная библиотека eLIBRARY.RU https://elibrary.ru/defaultx.asp
- 2. Федеральная государственная информационная система Национальная электронная библиотека (НЭБ). https://rusneb.ru/
- 3. Мультидисциплинарная реферативная и наукометрическая база данных Scopus компании Elsevier https://www.scopus.com/search/form.uri?display=basic#basic
- 4. Политематическая реферативно-библиографическая и наукометрическая (библиометрическая) база данных Web of Science компании Clarivate Analytics http://apps.webofknowledge.com/WOS_GeneralSearch_input.do?product=WOS&search_mode=GeneralSearch&SID=F4DWwm8nvkgneH3Gu7t&preferencesSaved=

9. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю)

Лекционные аудитории оборудованы видеопроекционным оборудованием для презентаций, средствами звуковоспроизведения, экраном, персональным компьютером с выходом в сеть Интернет; помещения для проведения семинарских и практических занятий оборудованы учебной мебелью; библиотека имеет рабочие места для студентов; компьютерные классы оснащены видеопроекционным оборудованием, средствами звуковоспроизведения, экраном, персональными компьютерами с выходом в сеть Интернет.

10. Особенности освоения дисциплины для инвалидов и лиц с ограниченными возможностями здоровья

Обучение обучающихся с ограниченными возможностями здоровья при необходимости осуществляется на основе адаптированной рабочей программы с использованием специальных методов обучения и дидактических материалов, составленных с учетом особенностей психофизического развития, индивидуальных возможностей и состояния здоровья таких обучающихся (обучающегося).

При определении формы проведения занятий с обучающимся-инвалидом учитываются рекомендации, содержащиеся в индивидуальной программе реабилитации инвалида, относительно рекомендованных условий и видов труда.

При необходимости для обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья создаются специальные рабочие места с учетом нарушенных функций и ограничений жизнедеятельности.