Министерство науки и высшего образования Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего образования РОССИЙСКИЙ ГОСУЛАРСТВЕННЫЙ ГИЛРОМЕТЕОРО ПОГИЧЕСКИЙ

РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГИДРОМЕТЕОРОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ филиал ФГБОУ ВО «РГГМУ» в г. Туапсе

Кафедра «Метеорологии, экологии и экономического обеспечения деятельности предприятий природопользования»

Рабочая программа по дисциплине

ДИНАМИЧЕСКАЯ МЕТЕОРОЛОГИЯ

Основная профессиональная образовательная программа высшего образования программы бакалавриата по направлению подготовки

05.03.05 «Прикладная гидрометеорология»

Направленность (профиль): Прикладная метеорология

Квалификация: **Бакалавр**

Форма обучения **Очная**, заочная

Год поступления 2019, 2020

\		
Согласовано Руководитель ОПОП «Прикладная гидрометеорология»		Утверждаю Директор филиала ФГБОУ ВО «РГГМУ» в г. Туапсе Аракелов М.С
		Рассмотрена и утверждена на заседании кафедры 31 августа 2020 г., протокол № 1
	ž.	Зав. кафедрой Цай С.Н.
		Авторы-разработчики:

ОЧНАЯ ФОРМА ОБУЧЕНИЯ

Семестр	Всего по ФГОС Час/ ЗЕТ	Аудитор ных Час	Лек- ций, Час	Практич. занятий, Час	Лаборат. работ, Час	CPC,	Форма промежуточного контроля (экз./зачет)
5	144/4	56	28	28		88	экзамен
Итого	144/4	56	28	28		88	экзамен

ЗАОЧНАЯ ФОРМА ОБУЧЕНИЯ

Курс	Всего по ФГОС Час/ ЗЕТ	Аудитор ных Час	Лек- ций, Час	Практич. занятий, Час	Лаборат. работ, Час	СРС, Час	Форма промежуточного контроля (экз./зачет)
4 зимн	36	8	4	4		28	
4 лети	108	6	2	6		100	экзамен
Итого	144/4	14	6	10		128	экзамен

Аннотация рабочей программы представлена в приложении 1.

1. Цели и задачи учебной дисциплины, ее место в учебном процессе

1.1. Цели и задачи изучения дисциплины

Цель дисциплины «Динамическая метеорология» - сформировать и конкретизировать знания об основных законах сохранения в сплошных средах и их применению к динамике атмосферы, ознакомление с теорией движения атмосферы Земли, основанной на законах сохранения, а также использованию полученной информации в профессиональной деятельности.

Задачи дисциплины — формирование общекультурных, общепрофессиональных и профессиональных компетенций при освоении ОПОП ВО, реализующей ФГОС ВО по следующим направлениям деятельности:

- ознакомление с основами динамики атмосферы;
- изучение теоретических основ математического моделирования различных циркуляционных процессов;
- изучение основных принципов численного (гидродинамического) прогноза погоды.

Компетентностный подход предполагает овладение базовым набором знаний, умений и практических навыков, необходимых для понимания динамических процессов в атмосфере и их практическому применению в профессиональной деятельности.

1.2. Краткая характеристика дисциплины

«Динамическая метеорология» является одной из дисциплин вариативной части блока Б1 по направлению подготовки 05.03.05 «Прикладная гидрометеорология», профиль «Прикладная метеорология».

Предметом изучения дисциплины являются законы сохранения, широкий спектр дифференциальных уравнений описывающих термодинамические и динамические процессы в атмосфере, овладение навыками решения подобных дифференциальных уравнений и представления моделей природных процессов.

2. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

2.1. Требования к уровню освоения дисциплины

Требованиями к уровню освоения дисциплины является достижение следующих результатов образования (PO):

знать:

- основные принципы самообразования, саморазвития и самоконтроля, приобретения новых знаний, повышения своей квалификации (ОК-5);
- современную картину мира на основе знаний основных положений, законов и методов естественных наук, физики и математики (ОПК-1;
- основные принципы анализа и интерпретации данных натурных и лабораторных наблюдений, теоретических расчетов и моделирования (ОПК-3);
- методы анализа явлений и процессов, происходящих в природной среде, экспериментальных данных и массивов гидрометеорологической информации, выявления в них закономерностей и отклонения (ПК-2);
- основные типы гидродинамической неустойчивости, определяющие динамику атмосферных процессов разного масштаба основные типы гидродинамической неустойчивости, определяющие динамику атмосферных процессов разного масштаба (ППК-1).

уметь:

- самостоятельно работать с литературой, приобретать новые знания, повышать свою квалификацию (ОК-5);
- представлять современную картину мира на основе знаний основных положений, законов и методов естественных наук, физики и математики (ОПК-1);
- анализировать и интерпретировать данные натурных и лабораторных наблюдений, теоретических расчетов и моделирования (ОПК-3);
- анализировать явления и процессы, происходящие в природной среде, на основе экспериментальных данных и массивов гидрометеорологической информации, выявлять в них закономерности и отклонения (ПК-2);
- ориентироваться во всем многообразии пространственных и временных масштабов динамических процессов, происходящих в атмосфере, решать, реализовывать на практике и анализировать результаты решения гидрометеорологических задач (ППК-1).

владеть:

- способностью к самообразованию, саморазвитию и самоконтролю, приобретению новых знаний, повышению своей квалификации (ОК-5);
- способностью представить современную картину мира на основе знаний основных положений, законов и методов естественных наук, физики и математики (ОПК-1);
- навыками анализа и интерпретации данных натурных и лабораторных наблюдений, теоретических расчетов и моделирования (ОПК-3);
- способностью анализа явлений и процессов, происходящих в природной среде, на основе экспериментальных данных и массивов гидрометеорологической информации, выявлять в них закономерности и отклонения (ПК-2);
- навыками, необходимыми для понимания современной литературы по вопросам динамики атмосферы, и участия в работах по изучению динамики атмосферы (ОК-5, ОПК-1, ОПК-3, ПК-2, ППК-1);
- способностью решать, реализовывать на практике и анализировать результаты решения гидрометеорологических задач (ППК-1).

В процессе освоения данной дисциплины студент формирует и демонстрирует следующие общекультурные, общепрофессиональные и профессиональные компетенции при освоении ОПОП ВО, реализующей $\Phi\Gamma$ ОС ВО по направлению подготовки 05.03.05 «Прикладная гидрометеорология», профиль «Прикладная метеорология».

Общекультурные

OK-5 - способностью к самообразованию, саморазвитию и самоконтролю, приобретению новых знаний, повышению своей квалификации.

Общепрофессиональные

ОПК-1 - способностью представить современную картину мира на основе знаний основных положений, законов и методов естественных наук, физики и математики

ОПК-3 - способностью анализировать и интерпретировать данные натурных и лабораторных наблюдений, теоретических расчетов и моделирования.

Профессиональные

ПК-2 - способностью анализировать явления и процессы, происходящие в природной среде, на основе экспериментальных данных и массивов гидрометеорологической информации, выявлять в них закономерности и отклонения.

Профессионально-прикладные

ППК-1 - умение решать, реализовывать на практике и анализировать результаты решения гидрометеорологических задач.

2.2. Место дисциплины в структуре ОПОП ВО

«Динамическая метеорология» является одной из дисциплин вариативной части блока Б1 по направлению подготовки 05.03.05 «Прикладная гидрометеорология», профиль «Прикладная метеорология».

Необходимыми условиями для освоения дисциплины являются: **знание** законов сохранения, широкого спектра дифференциальных уравнений описывающих термодинамические и динамические процессы в атмосфере, **умение** решать подобные дифференциальные уравнения, **владение** навыками представления моделей природных процессов.

Содержание дисциплины является логическим продолжением содержания дисциплин «Физика», «Физика атмосферы», «Механика жидкости и газа (гидромеханика)», «Математика» и служит основой для освоения дисциплин «Методы зондирования окружающей среды», «Синоптическая метеорология», «Мезометеорология и сверхкраткосрочные прогнозы».

3. Объем дисциплины (модуля) в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

ОЧНАЯ ФОРМА ОБУЧЕНИЯ

Общая трудоемкость дисциплины составляет 4 зачетные единицы, 144 часа. Контактная работа составляет 56 часов: 28 — лекции, 28 — практические, в т.ч. 12 часов занимают занятия в интерактивной форме, самостоятельная работа студента — 88 часов.

ой	191		Виды	і учебной	нагрузки	и их тру	доемкост	гь, часы
№ модуля образовательной программы	№ раздела, темы	Наименование раздела дисциплины	Лекции	Практические занятия	Лабораторные работы	CPC	Контроль	Всего часов
	1	Кинематика и динамика сжимаемой жидкости.	8		8	30		46

2	Квазигеострофическая теория.	10		10	30	50
3	Волновые движения в атмосфере.	10		10	28	48
	Экзамен					
итого:			-	28	88	144

ЗАОЧНАЯ ФОРМА ОБУЧЕНИЯ

Общая трудоемкость дисциплины составляет 3 зачетные единицы, 144 часа. Контактная работа составляет 14 часов: 6 – лекции, 10 – практические, самостоятельная работа студента – 128 часов.

ой	161		Виды	учебной	нагрузки	и их тру	доемкост	гь, часы
№ модуля образовательной программы	№ раздела, темы	Наименование раздела дисциплины	Лекции	Практические занятия	Лабораторные работы	CPC	Контроль	Всего часов
	1	Кинематика и динамика сжимаемой жидкости.	2	2		40		44
	2	Квазигеострофическая теория.	2	4		48		54
	3	Волновые движения в атмосфере.	2	4		40		46
		Экзамен						
		итого:	6	10		128		144

4. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий ОЧНАЯ ФОРМА ОБУЧЕНИЯ

4.1.Теоретический курс (ОК -5, ОПК-1, ОПК-3, ПК- 2, ППК-1)

Форма обучения - очная

№	Номер раздела	Объем часов		Раздел, тема учебной дисциплины, содержание темы
п/п	дисциплины	Лекции	CPC	т аздел, тема у конон днецинанны, содержание темы
1	Раздел 1	2	6	Тема 1.1. Кинематика и динамика сжимаемой жидкости. Некоторые сведения из векторного исчисления. Основные операторы, используемые в динамической метеорологии: градиент, дивергенция, завихренность, оператор Лапласа. Некоторые сведения о кинематике жидкости: система координат, траектории движения частиц жидкости, переменные

				Эйлера и Лагранжа.
				Тема 1.2. Уравнения гидротермодинамики для
				турбулентной среды. Уравнения
				гидротермодинамики для турбулентной среды.
2		4	6	Турбулентный характер атмосферных движений и его
_				математическое описание. Осреднение уравнений
				движения, притоков тепла и влаги и баланса примеси.
				Уравнения Рейнольдса.
				Тема 1.3. Масштабный анализ и упрощения
				уравнений гидротермодинамики. Отдельные виды
				стационарных движений: геострофический поток,
				потоки Куэтта и Пуазейля. Уравнения баротропной
				атмосферы (уравнения мелкой воды). Изменения
				геострофического ветра с высотой, термический
3		2	6	ветер, агеострофический ветер. Уравнения гидро-
		-		термодинамики в криволинейных координатах.
				Операторы градиента, дивергенции, вихря и Лапласа
				в цилиндрических и сферических координатах.
				Уравнения гидротермодинамики в сферических
				координатах. Геострофический ветер в сферической
				системе координат.
				Тема 2.1. Квазигеострофическая теория. Уравнение
				вихря, уравнение потенциального вихря, уравнение
				спиральности, уравнение дивергенции скорости,
				уравнение энергии, уравнение тенденции.
4		4	6	Определение вертикальной скорости на основе
				уравнения неразрывности и уравнения притока тепла.
				Квазигеострофическая теория, квазигеострофический
				потенциальный вихрь.
				Тема 2.2. Пограничные слои в атмосфере.
				Гидродинамическое определение погранич-ных слоев
	Раздел 2	,	6	и их толщин. Планетарный пограничный слой (ППС)
5		2	6	и внутренний (призем-ный) подслой. Вертикальные
				профили метеорологических величин. Вертикальная
				ско-рость на верхней границе ППС.
				Тема 2.3.Основные формы и преобразования
				энергии в атмосфере. Баланс энергии. Основные
				формы энергии в атмосфере. Основные
6		4	6	преобразования. Полная потенциальная энергия.
				Уравнение преобразования энергии в разных
				системах координат.
				Тема 3.1. Волновые движения в атмосфере.
				Линеаризация уравнений гидротермодинамики.
				Волновые движения в атмосфере. Инерционные
				волны в баротропной атмосфере (волны Россби) на
_				бета-плоскости и на сфере. Баротропная сдвиговая
7		4	6	неустойчи-вость. Внешние гравитационные волны.
	Радел 3			Гравитационно-инерционные волны в гео-
	, ,			строфическом потоке. Волны Пуанкаре и Кельвина.
				Акустические волны. Внутренние гравитационные
				волны. Адаптация полей ветра и давления.
				<i>Тема 3.2. Бароклинная неустойчивость.</i> Бароклинная
8		4	6	неустойчивость. Линейная теория бароклинной
				неустойчивости (задача Иди). Результаты численного

				изучения ба-роклинной неустойчивости.
9		2	4	Тема 3.3. Атмосферные фронты. Атмосферные фронты. Фронтогенез и фронтолиз, волны на поверхности раздела.
	Итого:	28	52	

4.2. Практические занятия (ОК -5, ОПК-1, ОПК-3, ПК- 2, ППК-1)

		Объем ч	асов	Формы	
№ п/п	Номер раздела дисциплины	Аудитор ных	СРС	контроля вьтолнения работы	Наименование лабораторной работы
1	Раздел 1 (Тема 1.1)	4	4	Отчет	Система уравнений гидродинамики
2	Раздел 1 (Тема 1.2.)	2	4	Отчет	Уравнение первого начала термодинамики для изопроцессов.
3	Раздел 1 (Тема 1.3.)	2	4	Отчет	Примеры определения циркуляции скорости
4	Раздел 2 (Тема 2.1.)	4	4	Отчет	Уравнения переноса восходящей и нисходящей радиации
5	Раздел 2 (Тема 2.2.)	2	4	Отчет	Профиль ветра в пограничном слое атмосферы
6	Раздел 2 (Тема 2.3.)	2	4	Отчет	Взаимодействие волн со средним потоком
7	Раздел 3 (Тема 3.1.)	4	4	Отчет	Основной энергетический цикл атмосферы
8	Раздел 3 (Тема 3.2.)	4	4	Отчет	Баротропная неустойчивость. Блокирующие ситуации в атмосфере
9	Раздел 3 (Тема 3.3)	4	4	Отчет	Неустойчивость течений с горизонтальным и вертикальным сдвигом ветра.
	Итого:	28	36		

4.3. Лабораторные работы учебным планом не предусмотрены

ЗАОЧНАЯ ФОРМА ОБУЧЕНИЯ (ОК -5, ОПК-1, ОПК-3, ПК- 2, ППК-1)

Номер		Объем час	ОВ	
раздела, темы дисципли ны	Лекции	Практи ческие	СРС	Раздел, тема учебной дисциплины, содержание темы
1	2	2	40	Тема 1.1. Кинематика и динамика сжимаемой жидкости. Некоторые сведения из векторного исчисления. Основные операторы, используемые в динамической метеорологии: градиент, дивергенция, завихренность, оператор Лапласа. Некоторые сведения о кинематике жидкости: система координат, траектории движения частиц жидкости, переменные Эйлера и Лагранжа. Тема 1.2. Уравнения гидротермодинамики для турбулентной среды. Уравнения гидротермодинамики для турбулентной среды. Турбулентный характер

				атмосферных движений и его математическое описание.
				Осреднение уравнений движения, притоков тепла и
				влаги и баланса примеси. Уравнения Рейнольдса.
				Тема 1.3. Масштабный анализ и упрощения
				уравнений гидротермодинамики. Отдельные виды
				стационарных движений: геострофический поток,
				потоки Куэтта и Пуазейля. Уравнения баротропной
				атмосферы (уравнения мелкой воды). Изменения
				геострофического ветра с высотой, термический ветер,
				агеострофический ветер. Уравнения гидро-
				термодинамики в криволинейных координатах.
				Операторы градиента, дивергенции, вихря и Лапласа в
				цилиндрических и сферических координатах.
				Уравнения гидротермодинамики в сферических
				координатах. Геострофический ветер в сферической
				системе координат.
				Практическое занятие № 1. Система уравнений гидродинамики.
				Практическое занятие № 2 . Примеры определения
				циркуляции скорости
				Тема 2.1. Квазигеострофическая теория. Уравнение
				вихря, уравнение потенциального вихря, уравнение
				спиральности, уравнение дивергенции скорости,
				уравнение энергии, уравнение тенденции. Определение
				вертикальной скорости на основе уравнения нераз-
				рывности и уравнения притока тепла.
				Квазигеострофическая теория, квазигеострофи-ческий
				потенциальный вихрь.
				Тема 2.2. Пограничные слои в атмосфере.
				Гидродинамическое определение пограничных слоев и
				их толщин. Планетарный пограничный слой (ППС) и
2	2	4	48	внутренний (приземный) подслой. Вертикальные
	2	4	46	профили метеорологических величин. Вертикальная
				скорость на верхней границе ППС.
				Тема 2.3.Основные формы и преобразования
				энергии в атмосфере. Баланс энергии. Основные
				формы энергии в атмосфере. Основные
				преобразования. Полная потенциальная энергия.
				Уравнение преобразования энергии в разных
				системах координат.
				Практическое занятие № 3. Уравнения переноса
				восходящей и нисходящей радиации
				1
				Практическое занятие № 4. Профиль ветра в
				пограничном слое атмосферы
				пограничном слое атмосферы Тема 3.1. Волновые движения в атмосфере.
				пограничном слое атмосферы Тема 3.1. Волновые движения в атмосфере. Линеаризация уравнений гидротермодинамики.
				пограничном слое атмосферы Тема 3.1. Волновые движения в атмосфере. Линеаризация уравнений гидротермодинамики. Волновые движения в атмосфере. Инерционные волны
				пограничном слое атмосферы Тема 3.1. Волновые движения в атмосфере. Линеаризация уравнений гидротермодинамики. Волновые движения в атмосфере. Инерционные волны в баротропной атмосфере (волны Россби) на бета-
3	2	4	40	пограничном слое атмосферы Тема 3.1. Волновые движения в атмосфере. Линеаризация уравнений гидротермодинамики. Волновые движения в атмосфере. Инерционные волны в баротропной атмосфере (волны Россби) на бетаплоскости и на сфере. Баротропная сдвиговая
3	2	4	40	пограничном слое атмосферы Тема 3.1. Волновые движения в атмосфере. Линеаризация уравнений гидротермодинамики. Волновые движения в атмосфере. Инерционные волны в баротропной атмосфере (волны Россби) на бетаплоскости и на сфере. Баротропная сдвиговая неустойчи-вость. Внешние гравитационные волны.
3	2	4	40	пограничном слое атмосферы Тема 3.1. Волновые движения в атмосфере. Линеаризация уравнений гидротермодинамики. Волновые движения в атмосфере. Инерционные волны в баротропной атмосфере (волны Россби) на бетаплоскости и на сфере. Баротропная сдвиговая неустойчи-вость. Внешние гравитационные волны. Гравитационно-инерционные волны в гео-строфическом
3	2	4	40	пограничном слое атмосферы Тема 3.1. Волновые движения в атмосфере. Линеаризация уравнений гидротермодинамики. Волновые движения в атмосфере. Инерционные волны в баротропной атмосфере (волны Россби) на бетаплоскости и на сфере. Баротропная сдвиговая неустойчи-вость. Внешние гравитационные волны. Гравитационно-инерционные волны в гео-строфическом потоке. Волны Пуанкаре и Кельвина. Акустические
3	2	4	40	пограничном слое атмосферы Тема 3.1. Волновые движения в атмосфере. Линеаризация уравнений гидротермодинамики. Волновые движения в атмосфере. Инерционные волны в баротропной атмосфере (волны Россби) на бетаплоскости и на сфере. Баротропная сдвиговая неустойчи-вость. Внешние гравитационные волны. Гравитационно-инерционные волны в гео-строфическом

				Тема 3.2. Бароклинная неустойчивость. Бароклинная					
				неустойчивость. Линейная тео-рия бароклинной					
				неустойчивости (задача Иди). Результаты численного					
				изучения ба-роклинной неустойчивости.					
				Тема 3.3. Атмосферные фронты. Атмосферные					
				фронты. Фронтогенез и фронтолиз, волны на					
				поверхности раздела.					
				Практическое занятие № 5. Основной					
				энергетический цикл атмосферы					
				Практическое занятие № 6. Неустойчивость течений					
				с горизонтальным и вертикальным сдвигом ветра.					
ИТОГО	6	10	128	-					

4.4. Курсовые работы по дисциплине (ОК -5, ОПК-1, ОПК-3, ПК- 2, ППК-1)

- 1. Волны Россби в движущейся атмосфере. Стационарные волны Россби. Характерные параметры волн Россби.
- 2. Распределение скорости ветра с высотой в стационарном горизонтально-однородном пограничном слое атмосферы. Спираль Экмана.
- 3. Геострофический ветер. Градиентный ветер в циклонах и антициклонах.
- 4. Нестационарные процессы в пограничном слое атмосферы. Суточный ход температуры воздуха.
- 5. Понятие турбулентности, критерий Рейнольдса, теоретический подход к проблеме возникновения турбулентности.
- 6. Силы, действующие в атмосфере. Уравнения движения для турбулентной атмосферы. Принципы упрощения уравнений движения.
- 7. Вертикальные профили коэффициента турбулентности и метеорологических величин в приземном слое атмосферы при безразличной стратификации и при стратификации, близкой к безразличной.
- 8. Вертикальные профили коэффициента турбулентности и метеорологических величин в приземном слое атмосферы при предельно устойчивой стратификации и в режиме свободной конвекции.
- 9. Нестационарные процессы в пограничном слое атмосферы. Суточный ход температуры воздуха.
- 10. Поверхности раздела в атмосфере. Динамические и кинематические условия на поверхности раздела. Угол наклона поверхности раздела к плоскости горизонта

4.5. Самостоятельная работа студента (ОК -5, ОПК-1, ОПК-3, ПК- 2, ППК-1)

ОЧНАЯ ФОРМА ОБУЧЕНИЯ

Раздел, тема дисциплины	№ п/п	Вид СРС	Формы контроля	Трудоемко сть, часов
1	1	Изучение тем теоретического курса. Проработка учебного материала (по конспектам, учебной и научной литературе). Подготовка к отчету практическим занятиям.	Отчет по практическим занятиям, тестирование.	30
2	2	Изучение тем теоретического курса. Проработка учебного материала (по конспектам, учебной и научной литературе). Подготовка к отчету практическим занятиям.	Отчет по практическим занятиям, тестирование	30

3	3	Изучение тем теоретического курса. Проработка учебного материала (по конспектам, учебной и научной литературе). Подготовка к отчету практическим занятиям.	Отчет по практическим занятиям, тестирование	28
			Итого:	88

ЗАОЧНАЯ ФОРМА ОБУЧЕНИЯ

Раздел, тема дисциплины	№ п/п	Вид СРС	Формы контроля	Трудоемко сть, часов
1	1	Изучение тем теоретического курса. Проработка учебного материала (по конспектам, учебной и научной литературе). Подготовка к отчету практическим занятиям.	Отчет по практическим занятиям, тестирование.	40
2	2	Изучение тем теоретического курса. Проработка учебного материала (по конспектам, учебной и научной литературе). Подготовка к отчету практическим занятиям.	Отчет по практическим занятиям, тестировние.	48
3	3	Изучение тем теоретического курса. Проработка учебного материала (по конспектам, учебной и научной литературе). Подготовка к отчету практическим занятиям.	Отчет по практическим занятиям, тестирование.	40
			Итого:	128

Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

Методические рекомендации по организации самостоятельной работы студентов включают:

- Методические рекомендации по получению, обработке и хранению приобретенной информации
- Методические рекомендации по написанию и проработке конспекта
- Методические рекомендации по написанию реферата
- Методические рекомендации по подготовке к тестам
- Методические рекомендации по подготовке к лабораторным работам
- Методические рекомендации по подготовке доклада
- Методические рекомендации по подготовке к экзамену

4.6. Рефераты (ОК -5, ОПК-1, ОПК-3, ПК- 2, ППК-1).

- 1. Атмосфера как сплошная среда.
- 2. Второе начало термодинамики и условия устойчивости атмосферы. Уравнение Клаузиуса-Клапейрона.

- 3. Гидродинамическая неустойчивость в атмосфере.
- 4. Закон Кирхгофа, закон Планка.
- 5. Закон смещения Вина, закон Стефана-Больцмана.
- 6. Излучение Солнца и Земли и его преобразование в различных спектральных областях.
- 7. Интегрирование уравнений переноса длинноволновой радиации в неизлучающей атмосфере, излучающей атмосфере.
- 8. Использование анализа размерностей для упрощения уравнений гидротермодинамики атмосферы.
- 9. Квазистатический процесс.
- 10. Общая формулировка уравнения баланса в интегральной и дивергентной форме.
- 11. Оптические свойства поверхностей.
- 12. Основные положения второго начала термодинамики. Совместная запись первого и второго начал термодинамики.
- 13. Основные формы энергии в атмосфере. Преобразование в атмосфере. Полная потенциальная энергия.
- 14. Основные характеристики влажного воздуха и соотношения между ними.
- 15. Основные характеристики радиации. Закон Ламберта Буге.
- 16. Политропические процессы. Адиабатический процесс. Потенциальная температура.
- 17. Связь между термодинамическими характеристиками при заданном притоке тепла.
- 18. Система уравнений гидротермодинамики атмосферы для турбулентной атмосферы.
- 19. Структура пограничного слоя атмосферы. Уравнения движения для стационарного и горизонтального однородного пограничного слоя. Уравнение притока тепла и влаги.
- 20. Теория устойчивости ламинарных течений Ландау.
- 21. Термодинамические флуктуации, термодинамический смысл энтропии.
- 22. Уравнение первого начала термодинамики для идеальных газов (изопроцессы).
- 23. Уравнение переноса радиации
- 24. Уравнение преобразования полной потенциальной энергии и кинетической для всей атмосферы. Основной энергетический цикл атмосферы.

5. Образовательные технологии

Преподавание дисциплины ведется с применением следующих видов организации учебного процесса:

- **1. Лекции** передача учебной информации от преподавателя к студентам, как правило с использованием компьютерных и технических средств, направленная в основном на приобретение студентами новых теоретических и фактических знаний (пункт 4.1. настоящей РПД).
- **2. Лабораторные занятия** это проведение учащимися по заданию преподавателя опытов с использованием приборов, инструментов и других технических приспособлений (пункт 4.3 настоящей РПД)
- **3.** Самостоятельная работа изучение студентами теоретического материала, подготовка к лекциям, лабораторным работам, практическим и семинарским занятиям, оформление конспектов лекций, написание рефератов, отчетов, курсовых работ, проектов, работа в электронной образовательной среде и др. (пункт 4.5 настоящей РПД)
- **4. Консультация** индивидуальное общение преподавателя со студентом, руководство его деятельностью с целью передачи опыта, углубления теоретических и фактических знаний, приобретенных студентом на лекциях, практических занятиях и в результате самостоятельной работы.

Преподавание дисциплины ведется с применением следующих видов образовательных технологий:

1. **Информационные технологии** — обучение в электронной образовательной среде с целью расширения доступа к образовательным ресурсам (теоретически к неограниченному объему и скорости доступа), увеличения контактного взаимодействия

- с преподавателем, построения индивидуальных траекторий подготовки и объективного контроля и мониторинга знаний студентов.
- 2. Работа в команде совместная деятельность студентов в группе под руководством лидера, направленная на решение общей задачи путем творческого сложения результатов индивидуальной работы членов команды с делением полномочий и ответственности.
- 3. **Case-study** анализ реальных проблемных ситуаций, имевших место в соответствующей области профессиональной деятельности, и поиск вариантов лучших решений.
- 4. **Игра** ролевая имитация студентами реальной профессиональной деятельности с выполнением функций специалистов на различных рабочих местах.
- 5. **Проблемное обучение** стимулирование студентов к самостоятельному приобретению знаний, необходимых для решения конкретной проблемы.

6. Фонды оценочных средств: оценочные и методические материалы 6.1. Оценочные материалы для проведения промежуточной аттестации обучающихся по дисциплине (модулю)

Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы (представлен в матрице компетенций ниже)

Матрица соотнесения тем/разделов учебной дисциплины/модуля и формируемых в них профессиональных и общекультурных компетенций как механизм выбора образовательных технологий и оценочных средств

Форма обучения - очная

Темы, разделы	Кол-во			Ком	петенци	и		
дисциплины	часов Л/ПР/СР С	ОК-5	ОПК- 1	ОПК- 3	ПК-2	ППК- 1	Общее количество компетенци й	$t_{\rm cp}$
Раздел 1. Кинематика и динамика сжимаемой жидкости.	8/8/30	+	+	+	+	+	5	9,2
Тема 1.1. Кинематика и динамика сжимаемой жидкости	2/4/10	+	+	+	+	+	5	3,2
Тема 1.2. Уравнения гидротермодинамики для турбулентной среды.	4/2/10	+	+	+	+	+	5	3,2
Тема 1.3. Масштабный анализ и упрощения уравнений гидротермодинамики	2/2/10	+	+	+	+	+	5	2,8
Раздел 2 Квазигеострофическа я теория.	10/8/30	+	+	+	+	+	5	9,6
Тема 2.1. Квазигеострофическая теория.	4/4/10	+	+	+	+	+	5	3,6
Тема 2.2. Пограничные слои в атмосфере.	2/2/10	+	+	+	+	+	5	3,2

Тема 2.3.Основные формы и преобразования энергии в атмосфере.	4/2/10	+	+	+	+	+	5	3,2
Раздел 3 Волновые движения в атмосфере.	10/12/28	+	+	+	+	+	5	10,0
Тема 3.1. Волновые движения в атмосфере.	4/4/10	+	+	+	+	+	5	3,6
Тема 3.2. Бароклинная неустойчивость.	4/4/10	+	+	+	+	+	5	3,6
Тема 3.3. Атмосферные фронты.	2/4/8	+	+	+	+	+	5	2,8
ИТОГО	28/28/88							
Трудоемкость формирования компетенций		28,8	28,8	28,8	28,8	28,8		144

Форма обучения – заочная

Темы, разделы	Кол-во	Компетенции						
дисциплины	часов Л/ПР/СРС	ОК-5	ОПК- 1	ОПК- 3	ПК-2	ППК- 1	Общее количество компетенци й	t _{cp}
Раздел 1. Кинематика и динамика сжимаемой жидкости.	2/2/40	+	+	+	+	+	5	8,8
Раздел 2. Квазигеострофическа я теория.	2/4/48	+	+	+	+	+	5	10,8
Раздел 3 Волновые движения в атмосфере.	2/4/40	+	+	+	+	+	5	9,2
ИТОГО	6/10/128							
Трудоемкость формирования компетенций		28,8	28,8	28,8	28,8	28,8		144

Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Текущая аттестация студентов производится в дискретные временные интервалы преподавателем по дисциплине в следующих формах:

- тестирование;
- лабораторные работы
- письменные домашние задания;

 отдельно оцениваются личностные качества студента (аккуратность, исполнительность, инициативность) – работа у доски, своевременная сдача тестов и письменных домашних заданий.

Критерии пересчета результатов теста в баллы

Для всех контрольных мероприятий происходит пересчет рейтинга, в баллы по следующим критериям:

- -рейтинг меньше 61% 0 баллов,
- -рейтинг 61-72 % -минимальный балл,
- -рейтинг 73-85 % средний балл
- -рейтинг 86-100% максимальный балл

Промежуточный контроль по дисциплине «Динамическая метеорология» проходит в форме экзамена.

Контроль и оценка результатов обучения при балльно - рейтинговой системе (БРС)

Форма обучения - очная

Показатели	Кол-во	Кол-во	Баллы	ИТОГО
	часов	тестов,		
		к/р		
Входной рейтинг		1	12	12
Посещение	56		0,5	28
в т.ч. лекции	28			
практические занятия	28			
лабораторные занятия	-			
Тесты по модулям		3	12	36
Семинары		1	-	-
Итоговый тест		1	22	24
ИТОГО				100

Форма обучения - заочная

Форма обучения - заочная						
Показатели	Кол-во	Кол-во	Баллы	ИТОГО		
	часов	тестов,				
		к/р				
Входной рейтинг		1	14	10		
Посещение	16		2,0	32		
в т.ч. лекции	6					
практические занятия	10					
лабораторные занятия	-					
Тесты по модулям		3	12	36		
Семинары		-	_	-		
Итоговый тест		1	22	22		
ИТОГО				100		

Критерии оценки уровня сформированности компетенций

	Показатели	61-72 %	73-85%	86-100%	
-		«удовлетворительно»	«хорошо»	«отлично»	

6.2. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Примерные контрольные вопросы и задания для текущей аттестации

Примерные вопросы (ОК-5, ОПК-1, ОПК-3, ПК-2, ППК-1)

- 1. Атмосфера как сплошная среда.
- 2. Волны Россби в движущейся атмосфере. Стационарные волны Россби.
- 3. Второе начало термодинамики и условия устойчивости атмосферы. Уравнение Клаузиуса-Клапейрона.
- 4. Гидродинамическая неустойчивость в атмосфере.
- 5. Закон Кирхгофа, закон Планка.
- 6. Закон смещения Вина, закон Стефана-Больцмана.
- 7. Излучение Солнца и Земли и его преобразование в различных спектральных областях.
- 8. Интегрирование уравнений переноса длинноволновой радиации в неизлучающей атмосфере, излучающей атмосфере.
- 9. Использование анализа размерностей для упрощения уравнений гидротермодинамики атмосферы.
- 10. Квазистатический процесс.
- 11. Общая формулировка уравнения баланса в интегральной и дивергентной форме.
- 12. Оптические свойства поверхностей.
- 13. Основные положения второго начала термодинамики. Совместная запись первого и второго начал термодинамики.
- 14. Основные формы энергии в атмосфере. Преобразование в атмосфере. Полная потенциальная энергия.
- 15. Основные характеристики влажного воздуха и соотношения между ними.
- 16. Основные характеристики радиации. Закон Ламберта Буге.
- 17. Политропические процессы. Адиабатический процесс. Потенциальная температура.
- 18. Понятие турбулентности, критерий Рейнольдса, теоретический подход к проблеме возникновения турбулентности.
- 19. Связь между термодинамическими характеристиками при заданном притоке тепла.
- 20. Система уравнений гидротермодинамики атмосферы для турбулентной атмосферы.
- 21. Структура пограничного слоя атмосферы. Уравнения движения для стационарного и горизонтального однородного пограничного слоя. Уравнение притока тепла и влаги.
- 22. Теория устойчивости ламинарных течений Ландау.
- 23. Термодинамические флуктуации, термодинамический смысл энтропии.
- 24. Уравнение первого начала термодинамики для идеальных газов (изопроцессы).
- 25. Уравнение переноса радиации
- 26. Уравнение преобразование полной потенциальной энергии и кинетической для всей атмосферы. Основной энергетический цикл атмосферы.

Примерные вопросы и задания для промежуточной аттестации Перечень вопросов к экзамену (ОК-5, ОПК-1, ОПК-3, ПК-2, ППК-1)

(билет состоит из 2 теоретических вопросов и 1 теста)

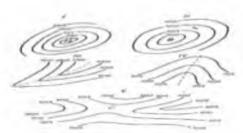
- 1. Атмосфера как сплошная среда.
- 2. Предмет и задачи динамической метеорологии. Основные уравнения динамики атмосферы. Уравнения движения атмосферы.
- 3. Уравнение неразрывности атмосферы.
- 4. Уравнение состояния атмосферы.
- 5. Уравнения притока тепла и влаги в атмосфере.
- 6. Силы, действующие в атмосфере. Сила тяжести.
- 7. Сила Кориолиса. Сила барического градиента.
- 8. Сила внутреннего трения в атмосфере.
- 9. Атмосферная турбулентность. Выражения для турбулентных потоков тепла, влаги и импульса.

- 10. Факторы, влияющие на интенсивность турбулентности. Уравнение баланса энергии турбулентности.
- 11. Барометрические формулы.
- 12. Геопотенциал. Карты барической топографии.
- 13. Условия вертикальной устойчивости атмосферы.
- 14. Упрощение уравнений движения атмосферы.
- 15. Классификация атмосферных движений.
- 16. Движение без трения в свободной атмосфере. Геострофический и градиентный ветер.
- 17. Термический ветер. Изменение геострофического ветра с высотой.
- 18. Геострофическая адвекция.
- 19. Задача о строении пограничного слоя атмосферы.
- 20. Распределение ветра и температуры с высотой в пограничном слое атмосферы.
- 21. Определение характеристик турбулентности по наблюдениям профиля ветра в пограничном слое атмосферы.
- 22. Определение характеристик турбулентности из уравнения баланса энергии турбулентности в пограничном слое атмосферы.
- 23. Определение высоты и среднего коэффициента турбулентности пограничного слоя атмосферы. Априорные модели профиля коэффициента турбулентности.
- 24. Нелинейная модель пограничного слоя атмосферы.

Примерные тесты входящие в билет (ОК-5, ОПК-1, ОПК-3, ПК-2, ППК-1)

- 1. Температура, при которой содержащийся в воздухе водяной пар достигает насыщения при неизменном общем давлении воздуха, называется
 - а)инверсией, б) изотермией, в) точкой росы, г) дефицитом насыщения
- 2. Слой атмосферы, лежащий над стратосферой, начиная с высоты около 50 км, и простирающийся до 80-85 км; выше начинается ионосфера.
 - а) мезосфера; б) тропосфера; в) экзосфера; г) стратосфера; д) термосфера.
 - 3. Выберите правильный ответ

Ветер, часто сильный и порывистый, с высокой температурой и пониженной относительной влажностью воздуха, дующий временами с гор в долины (указать буквой).


- а) бора; б) фен; в) горно-долинный; г) горно-склоновый; д) муссон.
- 4. Какие атмосферные фронты чаще проходят над территорией Алтая летом?
- а) АФ; б)ПФ; в)ТФ.
- 5. В чем заключаются различия тропических и фронтальных циклонов?
- а) в барическом градиенте и ширине основания;
- б) в температуре;
- в) во влажности.
- 6. Укажите правильный ответ (указать буквой)

У подножья склона температура воздуха составили 30°C, какова температура воздуха на высоте 5000 м если температура охлаждалась по сухоадиабатическому градиенту.

- а) -30°C; б) -35°C; в) -20°C; г) 29°C.
- 7. Укажите правильный ответ:

Осадки на теплом фронте циклона носят:

- а) обложной характер; б) ливневый характер; в) моросящий характер.
- 8.Определить тип, какой барической системы показан ниже:
- а) гребень;
- б) седловина;
- в) ложбина;
- г) циклон

9. Определить какой тип климата описан ниже:

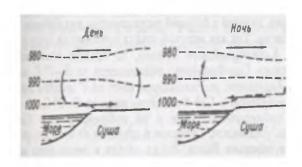
Характерна исключительная равномерность годовых температур. Суточные амплитуды температур выше годовых. Дожди обильны, выпадают в виде сильных ливней. По погодным условиям все дни года в общем похожи. Обычно утро бывает ясным и жарким. Около девяти часов утра поднимается ветер, появляются облака. Они постепенно сгущаются, заволакивают всё небо, и после полудня разражается гроза с ливнем. К концу дня дождь заканчивается, воздух несколько охлаждается, и затем быстро, без сумерек, наступает ясная тёплая ночь.

- а) экваториальный; б) субэкваториальный; в) субтропический; г) резко континентальный умеренный; д) арктический
 - 10. Выберите правильный ответ:

Кучевые облака являются ...

- а) облаками верхнего яруса; б) облаками среднего яруса; в) облаками нижнего яруса; г) облаками вертикального развития.
 - 11. Укажите правильный ответ:

Влажноадиабатический градиент составляет:


- а) 0.6°C /100 м; б) 1°C/100м; в) 0.8°C/100 м; г) 1.2°C/100 м.
- 12.В зимнее время на климат Западной Сибири большое влияние оказывает:
- а) северо-тихоокеанский максимум; б) азиатский максимум; в) алеутский минимум.
- 13. Укажите правильный ответ.

Испарение с поверхности растений называется: (указать буквой).

- а) коэффициент увлажнения; б) транспирация; в) испаряемость; г) аэрация
- 14. Выберете правильный ответ:

Замкнутая система изобар с повышенным давлением в центре (указать буквой).

- а) антициклон; б) циклон; в) седловина; г) гребень.
- 15. У подножья склона температура воздуха составили 50°С, какова температура воздуха на высоте 4000 м если температура изменялась по сухоадиабатическому градиенту.
 - a) 5°C; δ) 10°C; 15°C
 - 16. Где в январе теплее?
 - а) на южном побережье Норвегии;
 - б) в Москве.
 - 17. Каково значение точки росы при t воздуха 12°C и f = 100%
 - а) 10°C; б)12°C; в) 2°C.
 - 18. Определите, что показано на космоснимке
 - а) циклон; б) антициклон.
 - 19. Перечислите основные типы воздушных масс господствующие на Алтае зимой
 - а) МАВ; б) КУВ; в) КАВ; г) МУВ; д) МТВ.
 - 20. Определить тип местного ветра на рисунке.

- а) фен; б) бора; в) бриз;
- в) сарма; г) горно-склоновый.

- 21. Укажите правильное расположение слоев атмосферы:
- а) мезосфера; б) тропосфера; в) экзосфера; г) стратосфера; д) термосфера.

6.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Критерии оценки знаний студентов на экзамене

Оценки **«отлично»** заслуживает студент, обнаруживший всестороннее, систематическое и глубокое знание учебно-программного материала, умение свободно выполнять задания, предусмотренные программой, усвоивший основную и знакомый с дополнительной литературой, рекомендованной программой. Как правило, оценка «отлично» выставляется студентам, усвоившим взаимосвязь основных понятий дисциплины в их значении для приобретаемой профессии, проявившим творческие способности в понимании, изложении и использовании учебно-программного материала. Студент *подтвердил своими ответами сформированность компетенций, предусмотренных ФГОС (высокий уровень)*.

Оценки **«хорошо»** заслуживает студент обнаруживший полное знание учебнопрограммного материала, успешно выполняющий предусмотренные в программе задания, усвоивший основную литературу, рекомендованную в программе. Как правило, оценка «хорошо» выставляется студентам, показавшим систематический характер знаний по дисциплине и способным к их самостоятельному пополнению и обновлению в ходе дальнейшей учебной работы и профессиональной деятельности. Студент *подтвердил своими ответами сформированность компетенций*, *предусмотренных ФГОС*, на достаточном уровне.

Оценки **«удовлетворительно»** заслуживает студент, обнаруживший знания основного учебно-программного материала в объеме, необходимом для дальнейшей учебы и предстоящей работы по специальности, справляющийся с выполнением заданий, предусмотренных программой, знакомый с основной литературой, рекомендованной программой. Как правило, оценка «удовлетворительно» выставляется студентам, допустившим погрешности в ответе на экзамене и при выполнении экзаменационных заданий, но обладающим необходимыми знаниями для их устранения под руководством преподавателя. *Студент показывает частичную* (на среднем уровне) сформированность компетенций, предусмотренных ФГОС.

Оценка **«неудовлетворительно»** выставляется студенту, обнаружившему пробелы в знаниях основного учебно-программного материала, допустившему принципиальные ошибки в выполнении предусмотренных программой заданий. Как правило, оценка «неудовлетворительно» ставится студентам, которые не могут продолжить обучение или приступить к профессиональной деятельности по окончании вуза без дополнительных занятий по соответствующей дисциплине. *Студент демонстрирует несформированность* (низкий уровень) у выпускника соответствующих компетенций, предусмотренных ФГОС.

Методические указания для обучающихся по освоению дисциплины

По дисциплине «Динамическая метеорология» рабочим учебным планом предусмотрены следующие виды учебных занятий: лекции, лабораторные, самостоятельная работа студентов.

Лабораторные занятия являются логическим продолжением изучения той или иной темы дисциплины. Поэтому при подготовке к ним важно повторить теоретический материал по теме занятия, используя материалы лекций, рекомендуемые учебники и учебные пособия, электронные ресурсы. Без такой целенаправленной самостоятельной работы студентам затруднительно выполнять лабораторные задания, решать ситуационные задачи, ориентированных на применение полученных знаний в профессиональной деятельности.

Непременным условием успешной учебной деятельности студентов является не только активная работа в аудитории, но и целенаправленная самостоятельная работа, предусмотренная учебным планом. Она призвана способствовать более глубокому усвоению изучаемой дисциплины, формировать навыки информационно-эвристической и аналитической работы, а также ориентировать студентов на умение применять теоретические знания на практике. В ходе самостоятельной работы студентам важно выработать навыки самостоятельного поиска источников информации, умелого их использования при доработке конспектов лекций, подготовке к лабораторным занятиям и постепенно перейти от деятельности, выполняемой под руководством преподавателя, к деятельности, организуемой самостоятельно, к полной замене контроля со стороны преподавателя самоконтролем.

Самостоятельная работа студентов должна носить систематический характер.

Проработка учебного материала после проведенных лекционных занятий осуществляется по конспектам лекций с привлечением учебной и научной литературы, методических и нормативных документов и электронных ресурсов в соответствии со списком рекомендованной литературы к каждой изучаемой теме.

Первый шаг в самостоятельной работе студентов: после лекционного занятия в этот же день изучить конспект лекции и осмыслить прочитанное, выделить места, вызывающие дополнительные вопросы. Затем, обратившись к перечню рекомендованной, основной и дополнительной литературы по данной теме, дополнить конспект лекции, сделать необходимые выписки из методических и нормативных документов; с помощью опорных конспектов разобраться в примерах, приведенных в учебниках. В результате такой работы должно сложиться понимание основных вопросов темы.

Правильно и своевременно выполненная самостоятельная работа способствует развитию рациональных приемов познавательной деятельности в процессе изучения дисциплины «Динамическая метеорология». В последующем, на лабораторных занятиях, происходит углубление и расширение знаний, полученных на лекциях и в процессе самостоятельной работы, выясняются и все неясные вопросы. Самостоятельная работа не ограничивается только подготовкой к лабораторным занятиям. Она может продолжаться и в после их проведения. В этом случае она нацелена на более глубокое освоение учебной дисциплины «Динамическая метеорология» сверх учебной программы.

7. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

7.1. Перечень рекомендуемой литературы Основная литература:

- 1. Динамическая метеорология для океанологов : учебное пособие / В.М. Радикевич Л., изд. ЛПИ, 1985. 157 с. [Электронный ресурс; Режим доступа http://elib.rshu.ru/files_books/pdf/img-213174722.pdf].
- 2. Динамическая метеорология : учебное пособие / И.И. Мельникова, В.М. Радикевич. Л.: изд. ЛПИ, 1974. 168 с. [Электронный ресурс; Режим доступа http://elib.rshu.ru/files_books/pdf/img-218124340.pdf].

3. Практикум по курсу «Динамическая метеорология» : учебное пособие / И.Ю. Мелкая. – Л.: изд. ЛПИ, 1980. – 89 с. - [Электронный ресурс; Режим доступа http://elib.rshu.ru/files_books/pdf/img-218134645.pdf].

Дополнительная литература:

- 1. Динамическая метеорология: практикум: учеб. пособие / Н.А. Калинин, Е.М. Свиязов; Пермский государственный национальный исследовательский университет (Пермь), 2017. 80 с. [Электронный ресурс; Режим доступа https://elibrary.ru/download/elibrary_30706554_70266549.pdf].
- 2. Задачник по динамической метеорологии: учебное пособие / А.С. Гаврилов и др. Л., Гидрометеоиздат, 1984. 166 с. [Электронный ресурс; Режим доступа http://elib.rshu.ru/files_books/pdf/img-213163549.pdf]
- 3. Теоретические основы геофизической гидродинамики / А.С. Монин. Л., Гидрометеоиздат, 1988. 425 с. [Электронный ресурс; Режим доступа http://elib.rshu.ru/files_books/pdf/img-0905110.pdf]

7.2. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины Интернет-ресурсы:

- 1. http://www.meteorf.ru/ Сайт Росгидромета
- 2. https://meteoinfo.ru/ Погода и подробный прогноз от Росгидромета.

Электронные библиотечные ресурсы:

- 1. Электронно-библиотечная система РГГМУ ГидроМетеоОнлайн- http://elib.rshu.ru/
- 2. Информация электронной библиотечной системы http://znanium.com/
- 3. Научная электронная библиотека http://elibrary.ru
- 4. Издательство ЮРАЙТ https://biblio-online.ru/

7.3. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень программного обеспечения и информационных справочных систем (при необходимости)

Программное обеспечение:

- 1. Операционная система Windows XP, Microsoft Office 2007
- 2. Программы электронных таблиц Excel
- 3. Текстовый редактор Word
- 4. Программа для создания презентаций Power Point
- 5. Программа распознавания текста FineReader

Информационные справочные системы:

1. Консультант Плюс.

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю)

Лекционные аудитории оборудованы видеопроекционным оборудованием для презентаций, средствами звуковоспроизведения, экраном, персональным компьютером с выходом в сеть Интернет; помещения для проведения семинарских и практических занятий оборудованы учебной мебелью; библиотека имеет рабочие места для студентов; компьютерные классы оснащены видеопроекционным оборудованием, средствами звуковоспроизведения, экраном, персональными компьютерами с выходом в сеть Интернет.

9. Особенности освоения дисциплины для инвалидов и лиц с ограниченными возможностями здоровья

Обучение обучающихся с ограниченными возможностями здоровья при необходимости осуществляется на основе адаптированной рабочей программы с использованием специальных методов обучения и дидактических материалов, составленных с учетом особенностей психофизического развития, индивидуальных возможностей и состояния здоровья таких обучающихся (обучающегося).

При определении формы проведения занятий с обучающимся-инвалидом учитываются рекомендации, содержащиеся в индивидуальной программе реабилитации инвалида, относительно рекомендованных условий и видов труда.

При необходимости для обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья создаются специальные рабочие места с учетом нарушенных функций и ограничений жизнедеятельности.

Аннотация рабочей программы «Динамическая метеорология»

Дисциплина «Динамическая метеорология» является одной из вариативных дисциплин блока 1 рабочего учебного плана бакалавров по направлению подготовки по направлению подготовки 05.03.05 «Прикладная гидрометеорология», профиль «Прикладная метеорология». Дисциплина реализуется в филиале ФГБОУ ВО «РГГМУ» в г. Туапсе, кафедрой «Метеорологии, экологии и экономического обеспечения деятельности предприятий природопользования».

Дисциплина нацелена на формирование общекультурных компетенций ОК-5, общепрофессиональных ОПК-1, ОПК-3, профессиональных ПК-2, профессионально-прикладных компетенций ППК-1 выпускника.

Содержание дисциплины.

Кинематика и динамика сжимаемой жидкости. Некоторые сведения из векторного исчисления. Основные операторы, используемые в динамической метеорологии: градиент, дивергенция, завихренность, оператор Лапласа. Некоторые сведения о кинематике жидкости: система координат, траектории движения частиц жидкости, переменные Эйлера и Лагранжа.

Уравнения гидротермодинамики для **турбулентной среды**. Уравнения гидротермодинамики для турбулентной среды. Турбулентный характер атмосферных движений и его математическое описание. Осреднение уравнений движения, притоков тепла и влаги и баланса примеси. Уравнения Рейнольдса.

Масштабный анализ и упрощения уравнений гидротермодинамики. Отдельные виды стационарных движений: геострофический поток, потоки Куэтта и Пуазейля. Уравнения баротропной атмосферы (уравнения мелкой воды). Изменения геострофического ветра с высотой, термический ветер, агеострофический ветер. Уравнения гидро-термодинамики в криволинейных координатах. Операторы градиента, дивергенции, вихря и Лапласа в цилиндрических и сферических координатах. Уравнения гидротермодинамики в сферических координатах. Геострофический ветер в сферической системе координат.

Квазигеострофическая теория. Уравнение вихря, уравнение потенциального вихря, уравнение спиральности, уравнение дивергенции скорости, уравнение энергии, уравнение тенденции. Определение вертикальной скорости на основе уравнения неразрывности и уравнения притока тепла. Квазигеострофическая теория, квазигеострофический потенциальный вихрь.

Пограничные слои в атмосфере. Гидродинамическое определение погранич-ных слоев и их толщин. Планетарный пограничный слой (ППС) и внутренний (приземный) подслой. Вертикальные профили метеорологических величин. Вертикальная ско-рость на верхней границе ППС.

Основные формы и преобразования энергии в атмосфере. Баланс энергии. Основные формы энергии в атмосфере. Основные преобразования. Полная потенциальная энергия. Уравнение преобразования энергии в разных системах координат.

Волновые движения в атмосфере. Линеаризация уравнений гидротермодинамики. Волновые движения в атмосфере. Инерционные волны в баротропной атмосфере (волны Россби) на бета-плоскости и на сфере. Баротропная сдвиговая неустойчи-вость. Внешние гравитационные волны. Гравитационно-инерционные волны в гео-строфическом потоке. Волны Пуанкаре и Кельвина. Акустические волны. Внутренние гравитационные волны. Адаптация полей ветра и давления.

Бароклинная неустойчивость. Бароклинная неустойчивость. Линейная теория бароклинной неустойчивости (задача Иди). Результаты численного изучения бароклинной неустойчивости.

Атмосферные фронты. Атмосферные фронты. Фронтогенез и фронтолиз, волны на поверхности раздела.

Преподавание дисциплины предусматривает следующие формы организации учебного

процесса: лекции, лабораторные занятия, самостоятельная работа студента, консультации.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости в форме тестирования, контрольных работ и промежуточный контроль в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 4 зачетные единицы, 144 часа.