Министерство науки и высшего образования Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего образования РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГИДРОМЕТЕОРОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ филиал ФГБОУ ВО «РГГМУ» в г. Туапсе

Кафедра «Экономики и управления на предприятии природопользования»

Рабочая программа дисциплины

Геоинформационные системы

Основная профессиональная образовательная программа высшего образования программы бакалавриата по направлению подготовки

09.03.03 «Прикладная информатика»

Направленность (профиль): **Прикладные информационные системы и технологии**

Уровень: **Бакалавриа**т

Форма обучения **Очная/заочная**

Год набора 2019-2020

Согласовано

Руководитель/ОПОП

«Прикладная информатика»

Майборода Е.В.

Утверждаю Директор филиала ФГБОУ ВО «РГГМУ» в г. Туапсе

Олейников С.А.

Рассмотрена и утверждена на заселании кафедры

14 июня 2023 г., протокол № 9

Руководитель кафедры Анд Майборода Е.В.

Авторы-разработчики:

Попов Н.Н.

Tyance 2023

Протокол заседания кафедры № 9 от 14 июня 2023 г	
учебный год без изменений*	
Рассмотрена и рекомендована к использованию в учебном процессе на 20	023/2024

Рассмотрено и рекомендовано к использованию в учебном процессе на ____/____ учебный год с изменениями (см. лист изменений)**
Протокол заседания кафедры _____ от __._.20__ №___

^{*}Заполняется при ежегодном пересмотре программы, если в неё не внесены изменения

^{**} Заполняется при ежегодном пересмотре программы, если в неё внесены изменения

1. Цель и задачи освоения дисциплины

Цель дисциплины – формирование теоретических знаний и практических навыков по применению современных информационных технологий, геоинформационных систем, в вопросах сбора, анализа и представления пространственно-распределенной информации.

Основные задачи дисциплины:

- изучить геоинформационные системы
- овладеть навыком системного подхода к проектированию
- изучить классификацию ГИС.
- изучить технологии проектирования и создания геоинформационных систем.
- ознакомлении студентов с современными компьютерными средствами и технологиями обработки информации
- изучить единую среду для проектирования, картографирования и пространственного анализа.
 - ознакомится с моделями данных в ГИС
 - овладеть программным обеспечением ГИС

2. Место дисциплины в структуре основной профессиональной образовательной программы

Дисциплина относится к дисциплинам по выбору образовательной программы. Изучение дисциплины требует входных компетенций, знаний, умений и навыков, предусмотренных следующими курсами:

- Информатика и программирование
- Базы данных
- Информационные технологии

3. Перечень планируемых результатов обучения

Процесс изучения дисциплины направлен на формирование компетенции ПК-7; ПК-11

Таблица 1 – Профессиональные компетенции

Код и наименование	Код и наименование индикатора достижения	
профессиональной	профессиональной компетенции	
компетенции		
ПК-7. Способен	ИДПК-7.1. Владеет концептуальным проектированием	
разрабатывать концепцию	информационных систем	
системы и представлять её	ИДПК-7.2. Использует методы публичной защиты	
заинтересованным лицам	проектных работ на уровне концептуального	
	представления ИС	
ПК-11. Способен	ИДПК-11.1. Использует существующие типовые решения	
проектировать	и шаблоны проектирования программного обеспечения	
программное обеспечение	ИДПК-11.2. Применяет методы и средства	
	проектирования программного обеспечения, структур	
	данных, баз данных	
	программных интерфейсов	
	ИДПК-11.3. Использует принципы и виды построения	
	архитектуры программного обеспечения	

4. Структура и содержание дисциплины

4.1. Объем дисциплины

Объем дисциплины составляет 3 зачетные единицы, 108 академических часа.

Таблица 2 - Объем дисциплины по видам учебных занятий в академических часах

Объём дисциплины Всего часов		
Заочная форма обучения		
Объем дисциплины	108	

Контактная работа обучающихся с преподавателем (по видам аудиторных учебных занятий) – всего:	12
в том числе:	-
лекции	4
занятия семинарского типа:	
лабораторные занятия	8
Самостоятельная работа (далее – СРС) – всего:	96
в том числе:	-
курсовая работа	
контрольная работа	
Вид промежуточной аттестации	Экзамен

4.2. Структура дисциплины

Таблица 3 - Структура дисциплины для заочной формы обучения

N.C.	Taolinga 5 - Cipyki ypa gaedanisianis gira sae-inon dopinis ocy-tenia				11			
No	Тема	Кур	Виды учебной		Формы	Форми	Индикатор	
	дисциплины	С	работы, в т.ч.		текущего	руемые	Ы	
			самостоятельная		контроля	компет	достижения	
			работ	а студенто	ов,	успеваемост	енции	компетенци
			час.			И		й
			лекц	лабора	CPC			
			ии	торные				
1	Введение в	4	1	2	24	Доклад	ПК-7	ИДПК-7.1.
	геоинформацион					Лабораторна		идпк-7.2.
	ные систем					я работа		
						1		
2	Классификация и	4	1	2	24	Лабораторна	ПК-7	ИДПК-7.1.
	основные виды					я работа		ИДПК-7.2.
	ГИС							
3	Применение ГИС	4	1	2	24	Лабораторна	ПК-11	ИДПК-11.1.
	в природно-					я работа		ИДПК-11.2.
	технических							ИДПК-11.3.
	системах							
4	Геоинформацион	4	1	2	24	Лабораторна	ПК-7,	ИДПК-7.1.
	ные программы					я работа	ПК-11	ИДПК-7.2.
						_		идпк-11.1.
								идпк-11.2.
								ИДПК-11.3.
	Итого	_	4	8	96			
	111010		· ·					

4.3. Содержание разделов дисциплины

Раздел 1. Введение в геоинформационные систем

История развития и цели создания ГИС:

- Введение. История географические информационные систем;
- История развития ГИС;
- Основные концепции развития систем в XXI веке;

Пространственные данные:

- Периодизация развития ГИС»;
- Структура ГИС подсистемы управления, сбора данных;
- Создание проекта в ГИС система координат и проекции;
- Математическая основа ГИС;
- Порядок создания цифровых картографических основ.

Модели пространственных данных в ГИС:

- Особенности полевого и объектного подхода к описанию пространственных объектов.
- Растровые и векторные модели особенности структуры, представления информации, практического применения, способы создания.
 - Основные типы пространственных объектов в ГИС.
 - Создание тематических карт средствами ГИС.

Раздел 2. Классификация и основные виды ГИС

Классификация ГИС по пространственному обхвату:

- Региональные
- Континентальные
- Муниципальные

Классификация ГИС:

- Полнофункциональные;
- ГИС для просмотра данных; Геоинформационные САПР.

Раздел 3. Применение ГИС в природно-технических системах

- Технологии проектирования высокотехнологичных изделий в системе автоматизированного интегрированного производства:
 - Системы обработки информации при решении производственных задач
 - Программное обеспечение ведущих лесоустроительных предприятий,
- особенности технологий создания и использования геоинформационных баз данных лесного фондаСАПР в России и в мире. CAD системы:

Раздел 4. Геоинформационные программы

- WInGIS;
- MapInfo;
- ArcGis;
- QGIS.

4.4. Содержание лабораторных работ

Таблица 4 -Содержание лабораторных занятий для заочной формы обучения

№	Тематика лабораторных занятий	Всего		
темы		часов		
дисци				
плины				
1	Оценка компонентов качества пространственных данных 1			
	для различных источников			
1	Стандарты и форматы геоданных ГИС	1		
2	Картографирование неопределенности пространственных	1		
	данных			
2	Свободное программное обеспечение ГИС: подготовка	1		
	ГИС-проекта в Quantum GIS			
3	Координатная основа ГИС-проекта	1		
3	Векторизация границ лесничеств	1		
4	Импорт и экспорт форматов данных ГИС	1		
4	Создание ГИС проекта	1		

5. Перечень учебно-методического обеспечения самостоятельной работы обучающихся по дисциплине

Таблица 5.

№ раздела курса и темы	Содержание вопросов и заданий для
самостоятельного изучения	самостоятельного изучения
Введение в геоинформационные систем	Основные понятия в геоинформатке

Классификация и	Виды и классификации ГИС
основные виды ГИС	
Применение ГИС в природно-	Взаимосвязь систем геоинформационных
технических системах	технологий в геоинформационных системах
Геоинформационные программы	Проблемы интеграции и развития современных
	ГИС

6. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

6.1. Текущий контроль

Текущий контроль проводиться в форме доклада и выполнения лабораторных работ.

Примерные темы к докладу:

- 1) История развития ГИС
- 2) Векторные ГИС
- 3) Различные виды съемок и проектирование инженерных сооружений
- 4) Процесс измерения 3D-характеристик объекта на земной поверхности
- 5) Дистанционное зондирование
- 6) Растровые модели
- 7) Представление поверхностей в ГИС
- 8) Атрибутные данные в ГИС
- 9) ГИС-технологии
- 10) Аналитические возможности векторных ГИС
- 11) Анализ в растровых ГИС
- 12) ГИС управления природными ресурсами

Критерии оценки докладов

Доклад зачтен, если:

- 1. Качество доклада:
- 1.1. производит выдающееся впечатление, сопровождается иллюстративным материалом;
 - 1.2. четко выстроен;
 - 2. Использование демонстрационного материала:
- 2.1. автор представил демонстрационный материал и прекрасно в нем ориентировался;
 - 2.2. использовался в докладе, хорошо оформлен, но есть неточности;
 - 3. Качество ответов на вопросы:
 - 3.1. отвечает на вопросы;
 - 3.2. не может ответить на большинство вопросов;
 - 4. Четкость выводов:
 - 4.1. полностью характеризуют работу;
 - 4.2. нечетки;

Доклад не зачтен, если:

- 1. Качество доклада:
- 1.1. рассказывается, но не объясняется суть работы;
- 1.2. зачитывается.
- 2. Использование демонстрационного материала:
- 2.1. представленный демонстрационный материал не использовался докладчиком или был оформлен плохо, неграмотно.
 - 3. Качество ответов на вопросы:
 - 3.1. не может четко ответить на вопросы.

- 4. Четкость выводов:
- 4.1. имеются, но не доказаны.

Примерное задание на лабораторную работу:

Лабораторная работа №1. «Программное обеспечение для ГИС моделирования».

Цель: изучение основных типов данных в QGIS, которые используются в проектировании прикладных ГИС, при помощи средства визуального проектирования.

Задание: Создать тестовую модель при помощи средства визуального проектирования в QGIS

Ход работы.

- 1. Запустите ГИС QGIS.
- 2. Просмотрите элементы панели управления File, Edit, Diagram, Code, Settings и Help.
 - 3. Откройте элемент меню Fail. Создайте тестовую модель поверхности рельефа.

Лабораторная работа №2. «Проектирование прикладной ГИС с применением языка UML».

Цель: освоение навыков проектирования прикладных Геоинформационных систем.

Задание: Создать модель ГИС при помощи средства визуального проектирования в виде структурно-логической схемы средствами Draw.io

Ход работы.

- 1. Получите у преподавателя описание предметной области и требований к конкретному варианту прикладной ГИС.
- 2. С помощью средства моделирования Umbrello создайте модели прецедентов и объектов. Для целей проектирования используйте области WorkArea и WorkToolbar.
 - 3. Создайте модель базы данных вида сущность атрибуты.
 - 4. Экспортируйте отчет в формат PDF и сохраните проект ГИС в формате XMI.

В отчет по выполнению лабораторной работы включить результаты анализа хода выполнения работы скриншоты результатов выполнения основных команд.

Лабораторная работа №3. «Координатная основа ГИС-проекта».

Цель: изучение средств преобразования проекций в ГИС.

Задание: объединить исходные геоданные в единой проекции и системе координат Ход работы.

- 1. Изучить интерфейс библиотеки PROJ4.
- 2. Получить у преподавателя набора векторных слоев в разных системах координат проекциях.
- 3. Используя функционал библиотеки PROJ4, объединить исходные геоданные в единой проекции и системе координат.
- 4. Оформить отчет в файле формата PDF. В отчете укажите описание последовательности операций преобразования проекций.

В отчет по выполнению лабораторной работы включить результаты анализа хода выполнения работы скриншоты результатов выполнения основных команд.

Лабораторная работа №4. «Создание тематической карты в ГИС QGIS».

Цель: изучить методы и способы создания тематических карт.

Задание: Создать несколько тематических карт, отобразить атрибутивные данные на карте

Ход работы.

- 1. Получить у преподавателя задачу создания тематической карты.
- 2. Выбрать метод решения (загрузить слои, шейпы).
- 3. Создайте отчет в формате doc. Отчет должен содержать решение задачи и описание работы.

В отчет по выполнению лабораторной работы включить результаты анализа хода выполнения работы скриншоты результатов выполнения основных команд с пояснениями и комментариями.

Лабораторная работа №5. «Оценка компонентов качества пространственных данных для различных источников».

Цель: оценить компоненты качества разнородных пространственных данных и свести их в едином ГИС-проекте.

Задание: выполнить анализ пространственных данных используя инструмент GASS Ход работы.

- 1. Получите у преподавателя набор пространственных данных.
- 2. Выполните анализ данных используя инструментарий GRASS.
- 3. Создайте отчет в формате pdf.

В отчет по выполнению лабораторной работы включить результаты анализа хода выполнения работы скриншоты результатов выполнения основных команд.

Лабораторная работа №6. «Стандарты и форматы геоданных ГИС».

Цель: разработать трансляторы форматов данных ГИС.

Задание: разработать алгоритм и программный продукт перевода из исходного формата представления

Ход работы.

- 1. Получите у преподавателя набор геоданных.
- 2. Выберете формат для перевода.
- 3. Разработайте алгоритм перевода из исходного формата представления.
- 4. Используя, любой компилятор запрограммируйте алгоритм перевода.
- 5. Создайте отчет в виде pdf файла

В отчет по выполнению лабораторной работы включить результаты анализа хода выполнения работы скриншоты результатов выполнения основных команд.

Лабораторная работа №7. «Картографирование неопределенности пространственных данных».

Цель: показать на карте распространение неопределенности в результате ГИСопераций ввода и обработки пространственных данных.

Задание: отследить и визуализировать распространение неопределенности Ход работы.

- 1. Получить у преподавателя набор пространственных данных.
- 2. Выполнить в ГИС Grass+Quantum последовательности операций, отслеживая распространение неопределенности.
 - 3. Визуализировать неопределенность результатов.
 - 4. В файле отчета представить характер исходных данных и неопределенностей.
- В отчет по выполнению лабораторной работы включить результаты анализа хода выполнения работы скриншоты результатов выполнения основных команд.

Лабораторная работа №8. «Свободное программное обеспечение ГИС: подготовка ГИС-проекта в Quantum GIS».

Цель: показать на карте распространение неопределенности в результате ГИСопераций ввода и обработки пространственных данных.

Задание: отследить и визуализировать распространение неопределенности Ход работы.

- 1. Загрузите в QuantumGIS пространственные данные, полученные в лабораторных работах №3, 5, 6.
 - 2. Оформите слои цифровой карты в системе условных обозначений.
 - 3. Экспортируйте карту к печати через Export to PostScrip.
 - 4. Отчет цифровая карта в формате PostScript и файл PDF.

В отчет по выполнению лабораторной работы включить результаты анализа хода выполнения работы скриншоты результатов выполнения основных команд.

Критерии оценивания:

Лабораторная работа принимается в формате зачтено/ не зачтено.

Зачтено, если задание выполнено полностью, в представленном отчете обоснованно получено правильное выполненное задание.

Не зачтено, если задания выполнены частично или не выполнено.

6.2. Промежуточная аттестация

Форма промежуточной аттестации по дисциплине -экзамен.

Форма проведения зачета: устно по вопросам

Перечень вопросов для подготовки к экзамену:

ПК-7

- 1. На какие типы по степени автоматизации информационных процессов подразделяются информационные системы?
 - 2. Опишите понятие «геоинформационный анализ»
 - 3. Опишите понятие «пространственный анализ»
 - 4. Опишите понятие «геоинформационное моделирование»
 - 5. Перечислите основные виды геоинформационного анализа.
 - 6. Дайте определение понятию «геокодирование».
 - 7. Перечислите наиболее распространенные виды анализа поверхностей.
 - 8. Что относится к основным технологическим решениям ГИС общего назначения?
 - 9. Что такое директивная информация?
 - 10. Компоненты ArcGis Desctop. Их назначение.
- 11. Создание сценария моделирования ситуации в 2D и 3D режимах в ArcGIS Desktop;
- 12. Хранение цифровых трехмерных моделей объектов с геопростанственной привязкой в приложении ArcCatalog;
 - 13. Методика одновременного отображения карт и моделей;
 - 14. Опишите алгоритм подготовки и привязки растровых карт;

ПК-11

- 1. Опишите алгоритм ваших действий для поиска и получения данных спутниковой съемки.
 - 2. Как можно оцифровать имеющиеся бумажные карты?
 - 3. Какие существуют типы картометрических операций?
 - 4. Что такое пространственные запросы?
 - 5. Опишите алгоритм создания тематических карт.
 - 6. В каких природоохранных мероприятиях применяются ГИС?
 - 7. Что такое система координат?
- 8. Экспорт информации в виде интерактивных PDF файлов с возможностью просмотра трехмерных объектов.
- 9. Раскройте понятие ДЗЗ, назовите действующие в настоящий момент спутники ДЗЗ.

Экзамен оценивается по четырехбалльной шкале: «отлично» / «хорошо» / «удовлетворительно» / «неудовлетворительно».

Оценка «отлично» ставится студенту, ответ которого содержит:

– глубокое знание программного материала, а также основного содержания и новаций лекционного курса но сравнению с учебной литературой;

- знание концептуально-понятийного аппарата всего курса, а также свидетельствует о способности:
- самостоятельно критически оценивать основные положения курса;
- увязывать теорию с практикой.

Оценка **«отлично»** не ставится в случаях систематических пропусков студентом лабораторных и лекционных занятий по неуважительным причинам, а также неправильных ответов на дополнительные вопросы преподавателя.

Оценка **«хорошо»** ставится студенту, ответ которого свидетельствует о полном знании материала по программе, а также содержит в целом правильное, но не всегда точное и аргументированное изложение материала.

Оценка «хорошо» не ставится в случаях пропусков студентом лабораторных и лекционных занятий по неуважительным причинам.

Оценка «удовлетворительно» ставится студенту, ответ которого содержит:

- поверхностные знания важнейших разделов программы и содержания лекционного курса;
- затруднения с использованием научно-понятийного аппарата и терминологии курса;
- стремление логически четко построить ответ, а также свидетельствует о возможности последующего обучения.

Оценка «неудовлетворительно» ставится студенту, имеющему существенные пробелы в знании основного материала по программе, а также допустившему принципиальные ошибки при изложении материала.

7. Методические указания для обучающихся по освоению дисциплины

7.1. Методические указания к занятиям лекционного типа

Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначить вопросы, термины, материал, который вызывает трудности, пометить и попытаться найти ответ в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на консультации, на практическом занятии.

7.2. Методические указания к занятиям семинарского типа

Лабораторные занятия

При подготовке к лабораторным работам необходимо заранее изучить методические рекомендации по его проведению. Обратить внимание на цель занятия, на основные вопросы для подготовки к занятию, на содержание темы занятия.

Лабораторное занятие проходит в виде выполнения определенного задания на компьютере с использованием специального программного обеспечения. Студент должен сдавать лабораторную работу в виде наглядной демонстрации достигнутых результатов преподавателю.

Кроме того, на таких занятиях студенты представляют доклады, подготовленные во время самостоятельной работы. Основой доклада студента на занятии являются определения (смысл) терминов, связанных с социальной инженерией. Тема доклада выбирается студентом самостоятельно, исходя из его интересов. Доклад представляется в виде презентации (PowerPoint или PDF).

7.3. Методические указания по организации самостоятельной работы

Материал, законспектированный на лекциях, необходимо регулярно прорабатывать и дополнять сведениями из других источников литературы, представленных не только в программе дисциплины, но и в периодических изданиях.

При изучении дисциплины сначала необходимо по каждой теме прочитать

рекомендованную литературу и составить краткий конспект основных положений, терминов, сведений, требующих запоминания и являющихся основополагающими в этой теме для освоения последующих тем курса. Для расширения знания по дисциплине рекомендуется использовать Интернет-ресурсы; проводить поиски в различных системах и использовать материалы сайтов, рекомендованных преподавателем.

При ответе на зачете необходимо: продумать и четко изложить материал; дать определение основных понятий; дать краткое описание явлений; привести примеры. Ответ следует иллюстрировать схемами, рисунками и графиками.

8. Учебно-методическое и информационное обеспечение дисциплины

8.1. Перечень основной и дополнительной учебной литературы Основная литература

- 1) Попов Н.Н., Александрова Л.В., Абрамов В.М. Аппаратно-программные средства геоинформационного обеспечения поддержки решений в рамках рационального природопользования. СПб, СпецЛит, 2016.[Электронный ресурс] Режим доступа: http://elib.rshu.ru/files books/pdf/rid f982b417571f4e62a275b6c34e00be1c.pdf
- 2) Т.Е. Симакина, Лабораторный практикум, Цифровая обработка спутниковых снимков с помощью ГИС IDRISI, РГГМУ 2004Электронный ресурс. Режим доступа: http://elib.rshu.ru/files_books/pdf/img-217143142.pdf

Дополнительная литература

- 3) П.П. Бескид, Н.И. Куракина, Н.В. Орлова, Монография, Геоинформационные системы и технологии, РГГМУ 2010 Электронный ресурс. Режим доступа: http://elib.rshu.ru/files_books/pdf/img-504180119.pdf.
- 4) Гаврилова, И.В. Основы искусственного интеллекта [Электронный ресурс]: учеб. пособие / И.В. Гаврилова, О.Е. Масленникова. Электрон. дан. Москва: ФЛИНТА, 2013. 282 с. Режим доступа: https://e.lanbook.com/book/44749.

8.2. Перечень программного обеспечения

- 1. Операционная система Windows XP, Microsoft Office 2007
- 2. Программы электронных таблиц Excel
- 3. Текстовый редактор Word
- 4. Программа для создания презентаций Power Point
- 5. Программа распознавания текста FineReader

8.3. Перечень информационных справочных систем

1. СПС Консультант Плюс.

8.4. Электронные библиотечные ресурсы:

- 1. Электронно-библиотечная система ГидроМетеоОнлайн- http://elib.rshu.ru/
- 2. Информация электронной библиотечной системы http://znanium.com/
- 3. Электронный каталог библиотеки РГГМУ http://lib.rshu.ru/jirbis2/index.php? option=com_irbis&view=irbis&Itemid=108
- 4. Издательство ЮРАЙТ https://biblio-online.ru/

8.5. Современные профессиональные базы данных

- 1. Научная электронная библиотека eLIBRARY.RU https://elibrary.ru/defaultx.asp
- 2. Федеральная государственная информационная система Национальная электронная библиотека (НЭБ). https://rusneb.ru/
- 3. Мультидисциплинарная реферативная и наукометрическая база данных Scopus компании Elsevier https://www.scopus.com/search/form.uri?display=basic#basic

4. Политематическая реферативно-библиографическая и наукометрическая (библиометрическая) база данных Web of Science компании Clarivate Analytics http://apps.webofknowledge.com/WOS_GeneralSearch_input.do?product=WOS&search_mode=GeneralSearch&SID=F4DWwm8nvkgneH3Gu7t&preferencesSaved=

9. Материально-техническое обеспечение дисциплины

Лекционные аудитории оборудованы видеопроекционным оборудованием для презентаций, средствами звуковоспроизведения, экраном, персональным компьютером с выходом в сеть Интернет; помещения для проведения семинарских и практических занятий оборудованы учебной мебелью; библиотека имеет рабочие места для студентов; компьютерные классы оснащены видеопроекционным оборудованием, средствами звуковоспроизведения, экраном, персональными компьютерами с выходом в сеть Интернет.

10. Особенности освоения дисциплины для инвалидов и лиц с ограниченными возможностями здоровья

Обучение обучающихся с ограниченными возможностями здоровья при необходимости осуществляется на основе адаптированной рабочей программы с использованием специальных методов обучения и дидактических материалов, составленных с учетом особенностей психофизического развития, индивидуальных возможностей и состояния здоровья таких обучающихся (обучающегося).

При определении формы проведения занятий с обучающимся-инвалидом учитываются рекомендации, содержащиеся в индивидуальной программе реабилитации инвалида, относительно рекомендованных условий и видов труда.

При необходимости для обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья создаются специальные рабочие места с учетом нарушенных функций и ограничений жизнедеятельности.